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Abstract

This final report documents the results of afive-year investigation of methods for achieving
higher performance for knowledge-based systems through the design of innovative
software and hardware systems architectures. Volume 1 summarizes the work performed
and lessons learned, and serves as an annotated index to the set of over 50 project technical
reports. Volumes 2 through 4 contain the project technical reports.

1. Introduction

The Expert Systems on Multiprocessor Architectures (ESMA) project was initiated in
March 1985, and technical work was completed in 1990. The research was conducted at
Stanford University's Knowledge Systems Laboratory. The results and findings of the
project were published in a series of technical reports, which comprise Volume 2 of this
Final Report. Volume 1 sets forth the basic concepts that underlie the research, and
provides a road map to guide the reader through that technical literature. Volume 1 ends
with a project bibliography, which serves as a table of contents for Volumes 2 through 4.
ESMA builds upon and straddles a number of areas of research in computer science,
including artificial intelligence, programming languages, operating systems,
communication protocols and hardware. Prior to this project, some work was done on
analyzing the performance of rule-based systems on parallel architectures, most notably by
Gupta [Gupta 86]. On the hardware side, there are commercially available machines that
are simila. in some respects to the architectures considered here, notably the Ametek
machine. The relationship of ESMA to work in other fields is documented copiously in the
papers cited below.

On the other hand, this investigation is unique: the project focussed on applications
characterized by symboiic (largely non-numerical) computation; took an end-to-end multi-
level approach toward identifying and exploiting concurrency; and used highly
instrumented simulation to permit careful analysis of experimental results.

In the remainder of this chapter we set forth the goals of the project and list the personnel
who contributed toward achieving those goals. Chapters 2 through 5 describe and
summarize each of the four levels of analysis in our multi-level, vertical-slice strategy.
Chapter 6 draws together the princ;-al conclusions and lessons that were learned from this
research. Chapter 7 is a full bibliography of the technical reports that were produced by
project staff. Chapter 8 lists other referenced works.

1.1. Project Goals

The project's primary goal is to find ways to increase the performance of expert systems
through the use of the new, emergent, parallel hardware designs.

The number of possible implementation strategies for such a project is huge. One has only
to look at the large number of different hardware designs that are emerging and at the num-
ber of different problem-solving methods to see how combinatorial the problem would be if
we endeavored to investigate all of the reasonable and plausible combinations of architec-
tures. It was decided, therefore, that we could learn a great deal simply from making a
commitment to one, or at least a small number of different options at each point in the sys-
tem's make-up. We thus decided to take a "vertical slice" through the space of possible
solutions. Clearly we did not intend to investigate any options that seemed non-useful, so
we knew from the outset that, although we could not prove that we had the best design to
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meet our goals, our design would nevertheless be at least a plausible architecture for a fu-
ture computational environment.

We viewed the task of implementing concurrent exper systems as being one which was
split into a number of implementation layers. If we could achieve speed-up at each one ot
these layers, then we could hope for a substantial overall performance improvement com-
pared to existing AI systems. Our model of the layers into which the project could be split
is shown in Figure .

Applications

Problem-Solving Frameworks

Knowledge Retrieval

Resource Management

Programming Languages

Operating Systems

Systems Architectures

Figure 1. The layers of system implementation through which we hoped to
achieve computational speed-up in the project.

It was originally anticipated that the needs of the applications would drive the development
of the problem-solving frameworks and so on down through the implementation hierarchy
shown in Figure 1 until eventually the hardware would be designed under the constraints
passed down from above. In practice, however, this did not happen. Because of the diffi-
culty of finding and mounting an application suitable to our needs and the early availability
of personnc! interested in the hardware design aspect, the hardware design went ahead
more rapidry than the other layers. This resulted in our designs being more hardware
driven than application driven. This approach has its advantages, for example, an entirely
top-down design process could easily have resulted in low-level system requirements
which were not implementable.

As well as the thrust of the project coming from the bottom rather than the top, the levels of
abstraction actua!ly implemented differed significantly from those shown ;n Figure 1.
Figure 2 gives a more realistic representation of the layers that were actually investigated,
as opposed to what we intended to do.
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Applications

Problem-Solving Frameworks

Resource Management

Programming Languages

Hardware Systems Architectures,
Topologies and Protocols

Figure 2. The layers that were actually implemented in the project. Resource
Management is shown in small type because it was a recent addition and most of our

work was done without the help of this layer.

The Knowledge Systems Laboratory has considerably more expertise in software than in
hardware. We thus decided early on not to build any hardware - there are many other
research groups that could do this better than we. We decided, therefore, to simulate our
hardware. This would allow us to modify our software and hardware designs easily and
allow us to extract the maximum insight with the minimum effort.

The rest of this paper is split into sections which reflect the major layers shown in Figure 2.
In each of these sections the work of the relevant sub-projects will be discussed. Because
of the bottom-up thrust of the project the project's components will be discussed in a bot-
tom-up order. This will also reduce the number of forward references made, since dis:us-
sion of the higher layers will inevitably have to refer to the substrates on which they are
implemented.

1.2. Personnel

This project has employed a large number of people over the years and it seems appropriate
to name them all here:

Ed Feigenbaum, Bob Engelmore, Penny Nii, Bruce Delagi, Harold Brown, Hiroshi
Okuno, John Delaney, Byron Davies, Hirotoshi Maegawa, Nelleke Aiello, James Rice,
Nakul Sarmiya, Sayuri Nishimura, Eric Schoen, Greg Byrd, Max Hailperin, Russell
Nakano, Masafumi Minami, Chris Rogers, Alan Noble, Jean-Christophe Bandini, Manu
Thapar, Djuki Muliawan, Pandu Nayak, Jerry Yan and Sam Hahn.

2. Hardware-Level Systems Studies

As was mentioned above, hardware system design led the way in the project. In this
section we discuss a little bit of the motivation for the hardware designs and briefly de-
scribe both the current generation of hardware designs on which we are working and the
simulator we are using.
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2.1. Simple and Helios

-C=

Figure 3. The Simple system provides a toolkit from which to build circuits to
be simulated, a collection of probes to connect to the circuit and a set of instruments to

connect to the probes.

The hub of all of the work done on the project has been the digital circuit simulator,1 upon
which everything else is built. This simulator is called Simple. It is an event-driven
simulator, designed to allow the user to design and specialize digital circuits in a simple and
modular way, using a circuit design tool called Helios. A sophisticated set of instrument
tools allow the user to design and specialize simulated probes which can be connected to
the circuit while it is running. This allows the connection of a number of instruments to the
probes that permit the user to see the behavior of the circuit as it operates without interfer-
ing with the behavior of the system. We like to view this model as one of a laboratory
workbench equipped with collections of instruments, probes and circuit building compo-

INote: This simulator could be used to simulate ev,:,..s down to the gate level, but one of its powerful
attributes is its ability to allow the programmer to define the behavior of composite objects in terms of
methods that make these devices appe.r to be atomic black boxes. This ability obviates the need to do gate
level simulation of those aspects of the system whose behavior is well understood. This has enormous
benefits in terms of simulation time.
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nents from which the user can build systems and on which the user can perform quantita-
tive experiments (see Figure 3).

The key factors that make the Simple simulator so powerful are detailed in [Delagi 86b, 2-
27211, [Delagi 87, 2-294] and [Saraiya 90a, 4-360]. In effect, the simulator focuses on the
critical design aspects of multiprocessor design, namely interprocessor communication and
topology. The simulation is less detailed in other areas. This allows the user to simulate
the execution of sophisticated problems, rather than the toy problems or small code
fragments possible with other simulators. The instrumentation in the simulator is powerful
and flexible, not only allowing the user to observe events in the simulated system at
multiple levels of abstraction, but also readily allowing the user to modify and specialize
instrumentation so as to focus the simulator more sharply on interesting application-specific
behavior. This allows the user to gain substantial insight from simulator runs, while still
allowing the user to reconfigure the system easily and quickly in the event of an unexpected
result prompting unplanned experiments.

It was found early on that simulations of the sort we wanted to do would be computation-
ally very expensive. An experiment was performed, therefore, to parallelize the simulator
itself in an attempt to bring down the times taken for the simulations, which often exceeded
one day in duration. This resulted in AIDE, a distributed version of Simple [Saraiya 86, 4-
297]. Unfortunately, we were unable to achieve any speed-up at all for our simulations,
largely because of the communication bandwidth and latency associated with
communicating between the multiple Symbolics machines we were using via an Ethernet
and because the simulator, being event-driven, required frequent synchronization on the
event queue, which serialized the processing. Although this experiment yielded a negative
result, it was valuable in demonstrating the importance of process grain size and
synchronization effects.

2.2. CARE

The Simple simulator mentioned above was used to design and build what we refer to as
the CARE 2 machine and simulation system [Delagi 88a, 2-301] (see Figure 4). The CARE
machine is that simulated machine on which all of the experiments mentioned below have
been performed. The machine's design has a few key features which are worthy of note:

• Dynamic cut-through routing with local flow control, in order to optimize network
throughput [Byrd 87c, 2-155]. This protocol uses special packet terminators and
selective buffering to avoid deadlock during multicasts.

* Toroidal topology. Topology can be motivated by high-level, application domain
considerations, but it is also motivated by such low-level concerns as packaging
and communication protocols. Cost models were developed to characterize several
topologies and these topologies were tested under simulation. On balance, we
believe that toroidally connected networks have the best overall cost/benefit tradeoff
[Byrd 87b, 2-148].

* Non-blocking message sending, so as to encourage pipe-line processing.
* Communications network with alternative paths between points, so as to reduce

communications problems due to busy communication paths.

1 Citations fo. project reports point to the bibliography at the end of this volume and also to the page
number where he report can be found in volumes 2 through 4.
2The expans )n for this acronym seems to have been lost somewhere in the wash. We think that it has
something tc o with the words Concurrent and Array.
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A~separate communications controller, in order to support operating system func-
tifs and to implement the non-blocking send functionality mentioned above. This

communications controller is referred to as the "Operator". The processor in each
pocessing element that executes user code is called the "Evaluator".

A-.Sinplified model of a CARE machine processing element (site) is shown in Figure 4.

Buffers

Operatori-- Memory

Evaluator

Processing Element
Figure 4. A CARE machine processing element (site).

These processing elements can be connected together in a number of ways, such as into
grids and bus-based networks as it shown in Figure 5. When a CARE site is used simply
as a memory controller its evaluator processor is not used. Similarly, when a site is used
just as a processor in a bus-based shared-memory machine, only the evaluator is used.
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PIM M P/M PIM

M

Figure 5. CARE sites can be connected together into a variety of distribed and
shared memory of topologies. In this example we show a six-way connected grid and a

bus based machine.

The work on the CARE sub-project has focussed mainly on the design of inter-processor
communication networks, as is appropriate. This has meant that we have been able to ig-
nore the instruction level behavior of the processors themselves. The application programs
that we run are merely timed as they run between the points at which code fragments cause
communication between processors. Being able to avoid doing register level simulation of
the processors themselves has allowed us to execute much more complex and realistic pro-
grams on our simulated machines. We have therefore traded accuracy in our processor
simulation - assuming that the processing elements will behave much like existing Lisp
Machine processors - in favor of greater realism in terms of the system's performanre un-
der the load of real programs.

A number of aspects of system design have not been addressed in detail and the simulations
do not take these into account. Most significant among these, perhaps, are the fact that
memory usage, code distribution and garbage collection are not simulated, i.e. the CARE
machine was assumed to have unbounded local memory and code was assumed to have
been distributed uniformly to all processors at load time. Thus, although the CARE
architecture was designed with tarbage collection in mind, this was not simulated at all. In
fact, all possible extraneous impediments to accurate and reproducible run-time
measurement were eliminated. Such simulation machine system overheads as garbage
collection, paging, I/O and page creation were carefully factored out of the timing. This
resulted in timings that were not "realistic" in the sense that they did not account for certain
necessary system behavior, but these timings were nevertheless far more useful in general
because these system services are generally non-deterministic with respect to the simulation
and their behavior is a function of the performance of the simulation machine, not the
simulated machine.

The CARE/Simple simulator system is perhaps the most valuable tangible product of the
project. It is now being used in a number of research departments, both corporate and
academic, outside Stanford. Like all project software, it is in the public domain.
CARE/Simple will soon be available running under Common Lisp, CLUE and XI I on a
number of different platforms.
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CARE EXAMINER: EVALUATOR QUEUE LOAD

44 - .. o2II
4 3
4 2 -0

4 1#3 a2, 11.
S 3 3 0
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e2 4 . 40 .

2 I
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Si.mulated Tie [12s U 98 7.1 i

Figure 4. An example of instrumentation from the CARE system.

3. Operating Systems and Languages

A considerable amount of effort has been spent on the project in woiking at the operating
system level of abstraction. Because our experiments dealt with a single task, and file
system issues were not considered, it was not necessary to build an operating system per
se. The CARE machine itself features a dual processor for each processing element. This
allows much of the work of an operating system, particularly inter-processor
communication, to be done by a dedicated processor in parallel with the execution of user
code. The behavior of this communication processor is coded directly into the simulated
hardware.

Amongst the work that has been done in this area has been work on concurrent object-ori-
ented systems, concurrent Lisp dialects, programming models and resource allocation.

3.1. CAREL

CAREL [Davies 86, 2-226] was one of the first programs written to run on the CARE
simulated machine. It was an early attempt to find a Lisp language interface to the
distributed-memory hardware provided by CARE. It took as its basis Scheme [Abelson
83] and QLisp [Gabriel 84] and included primitives to allow remote function calls and
remote consing. It was quickly found that, because of the cost of process creation, it was
desirable to make the best use of any processes that were spawned. This efficiency was
accomplished by storing application dependent data in non-ephemeral spawned processes.
State of this type was implemented in CAREL as writable closure variables. These proess
closures could be used as elements in pipe-line computations or to represent mutable
communicating program objects, for instance to represent real-world objects with state.
State, as encapsulated in communicating objects, and the idea of pipe-line parallelism have
been pivotal in the design of the other systems devoloped on the project.
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The CAREL project was used mostly as a feasibility study and was soon discontinued.

3.2. CAOS

The first implementation of the Elint application, described further in Section 5.1, was
made without the benefit of any problem-solving framework, per se, but rather using an
object-oriented programming architecture. It was anticipated that the application could be
easily mounted almost directly on the CARE machine and some experiments could be run
quickly, which would allow us to learn some important lessons early in the project.

In order to mount the application, a distributed object-oriented system was implemented.
This was done because the CARE system did not, at the time, come with its own
"preferred" object system. The system that was implemented was called CAOS [Schoen
86, 4-433], a Concurrent Asynchronous Object-oriented System. It was implemented
using the Flavors system supported by the Lisp machines used by the project. It had a
number of key features:

• CAOS objects were dynamically instantiable and potentially multiprocess objects,
though each would execute on a single processor, having at least one stack group
associated with each CAOS object.

• CAOS objects were intentionally large grained. This was because it was anticipated
that the communications network would be the resource most competed for, thus
encouraging the programmer to perform a lot of computation in order to reduce the
number or size of messages sent.

* Packet-based message-passing was used as the metaphor for communication
between processes through streams in the language extensions to Lisp provided by
CAOS.

* A large number of different message sending primitives were defined, including
non-blocking sends that did not require a reply from the target of the message,
sends that returned futures to the values returned by the targets and send operations
which blocked immediately in order to wait for a reply from their targets.

Contrary to our intuition, the communications network proved to be the least loaded of the
CARE machine's resources during our experiments on CAOS. The computational expense
of supporting its complex object model caused the granularity of the resultant computations
to be too large. However, the real-time signal interpretation application developed in
CAOS focussed our attention on such key factors as decomposition grain size and the use
of replicated pipelines of processes. Because of the computational expense for each
process, the CAOS model was inconsistent with a large number of processors executing
tightly coupled subproblems typical of reasoning systems.

3.3. LAMINA

Lamina is the object system that was designed after the lessons were learned from the
CAOS experiments [Saraiya 90b, 4-394]. It was originally intended to provide a very
small, light-weight layer on top of the CARE machine so that distributed object-oriented
programs could be implemented efficiently. A significant part of the motivation for the
design of Lamina was the desire to reduce the overhead suffered by the CAOS system in
terms of associating large stack groups with each of the CAOS objects. Lamina introduced
the idea of objects with restartable, rather than resumable code segments, which do not
require stacks to preserve their state when they are not running. Since its first appearance
Lamina has been developed extensively and, although still small and light-weight, provides
a platform for the development of computational models for functional and shared-variable
as well as object-oriented programming.
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In [Delagi 86a, 2-243] not only are the three programming models - object-oriented,
shared-variable and functional - shown all to be implementable using Lamina's unifying
stream mechanism, but it also shows, by example, how these programming models can be
used to create pipelines, how to manage these software pipelines and how structures can be
dynamically created and relocated using the Lamina model. This model also allows the
substantial localization of storage reclamation, which is a crucial factor in the development
of efficient, concurrent garbage collection mechanisms.

Lamina has been used to implement a number of programs, both for direct implementations
of the two real-time expert systems being inve:,tigated (see Section 5), AirTrac and Elint,
and also a number of numerical programs. Lamina is now the preferred core programming
system for the CARE machine and applications in Lamina have consistently shown the
highest performance of all programs running on the CARE machine.

3.4. Inter-Processor and Inter-Process Communication

A considerable amount of work has been performed on the investigation of different mech-
anisms for inter-processor and inter-process communication. For distributed-memory ma-
chines we believe that the efficient distribution of work for large applications is crucially
linked to the efficient implementation of multicast communication [Byrd 87a, 2-116]. In
particular we have concentrated on the development of efficient cut-through routing
methods that allow the effective use of multicast. In [Byrd 88b, 2-196] several alternative
cut-through multicast protocols are described and compared experimentally. One particular
adaptive scheme is found to be superior to the others investigated both in performance and
in the fact that the protocol provides cut-through multicast without requiring dedicated
storage in the communication architecture for a full packet.

Although the principal thrust of the project has been towards the development of dis-
tributed-memory hardware, the fact that the CARE simulator can also simulate shared-
memory machines has allowed the investigation of the relative performance of these two
distinct classes of machines and the relative performance and appropriateness of shared-
variable and message-passing/object-oriented programming models. In [Byrd 88a, 2-181]
a particular parallel application is implemented in both object-oriented and shared-variable
styles. Using these examples it was possible to show how the differences in programming
model affected performance and what the costs associated with each model were. This, the
allowed the identification of strategies for minimizing data communication costs in each of
these programming models.

Work late in the project focussed on the design of hardware that might provide efficient
support for both the shared-variable and the message-passing programming models,
particularly through the use of cut-through multicast protocols [Byrd 89, 2-205].

3.5. Load-Balancing

We examined load-balancing problems within the context of the "vertical slice." (recall
Figure 2) [Hailperin 88, 3-1] In particular, this work is focussed on a load-balancing
method which migrates Lamina objects in a large network (thousands of processing ele-
ments) of CARE processing elements in order to improve the performance of soft-real-time
signal-interpretation systems such as Elint and AirTrac (see Section 5).

Experiments showed that without special attention to load balancing, performance was
seriously degraded. Without load balancing, only a lightly-loaded multicomputer, which
has cause to create processes dynamically, can in general achieve real-time performance.
The studies focussed on how to achieve global load balancing, which would be an
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attractive solut.on to this problem, as it would allow the effective use of massively-parallel
ensemble architectures for larger soft-real-time problems.

The challenge is to replace quick global communication, which is impractical in a mas-
sively-parallel system, with statistical techniques. In this vein, a novel approach to decen-
tralized load balancing was investigated based on statistical time-series analysis. Each
processing element estimates the system-wide average load using information about past
loads of individual sites and attempts to equal that average. This estimation process is
practical because the soft-real-time systems in which we are interested naturally exhibit
loads that are periodic, in a statistical sense akin to seasonality in econometrics.

A load-balancing system for Lamina/CARE was designed using this load-characterization
technique, and its implementation and experimentation with it in the context of the ELINT
and AIRTRAC applications are the subject of a Ph.D. thesis in progress..

3.6. Concurrent and High Performance Lisp

In an attempt to understand the behavior of the Lisp language on shared memory machines,
work was done on the QLisp system [Okuno 87, 3-443]. Although this work was not
used directly by other parts of the project, it investigated some of the constraints on
parallelizing production systems by studying the OPS5 language. This was the first large
application implemented in QLisp and it was found that QLisp was able to encode all of the
previously found sources of parallelism in OPS5, which amounted to a proof of concept
for QLisp.

3.7. Distributed Cache Coherence

A significant aspect of our research into shared memory architectures was that of caching
schemes and cache coherence. During our research we have designed and developed a new
scalable cache coherence protocol for large scale shared memory architectures. This
protocol has lower cost and more robust performance than previous solutions.

Cache coherence is an important and well known problem in shared memory
multiprocessors. In such systems, each processor has an associated cache. The same data
may be shared by different processors and thus copies of the data may be present in
different caches. A cache coherence mechanism must exist in order to keep these multiple
copies consistent with each other.

Bus-based shared multiprocessors usually provide some form of "snoopy" cache coherence
protocol. The term "snoopy" arises from the fact that on a write, each cache watches the
addresses transmitted on the bus. In the case that the cache has a copy of the data, it is
either invalidated or updated. Snoopy cache coherence protocols rely on the bus to provide
a global broadcast and such systems are limited by te n imber of processors a bus can
support before it saturates.

In order to overcome the requirement of a broadcast medium, directory based protocols
may be used. Earlier centralized directory based protocols maintain information about the
caches that have copies (,f the ilne in a directory that is an extension of the main memory.
This can potentially cause the directory to become a bottleneck. We have developed a new
distributed directory protocol that is based or a singly-linked list of caches. Such a system
is more scalable than earlier solutions in terms of both cost and performance. This research
is detailed extensively in [Thapar 89a, 4-502], [Thapar 89b, 4-527] and [Thapar 90, 4-
542].
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4. Problem-Solving Frameworks

One of the key layers of the vertical slice strategy was the organization of problem-solving
activity according to existing Al concepts. Al provided us with a number of different
problem-solving frameworks as candidates for this study. In fact, the project committed
itself at an early point to the Blackboard problem-solving model [Engelmore 881. This was
not an entirely arbitrary choice. The blackboard metaphor had already been applied
successfully in the area of real-time signal processing [Nii 82], the selected problem
domain for the project. It was also anticipated that the blackboard metaphor would help us
to extract parallelism from the application in the way that the problems were formulated be-
cause the metaphor has a model of asynchrony built into it. For reasons detailed in [Rice
88a] the blackboard model turned out not to be as parallel as we might have hoped, but we
still know of no better one for concurrent execution.

The development of problem-solving frameworks for parallel computation took two distinct
courses. First was the development of a fairly conservative, concurrent implementation of
an existing blackboard system to run on shared-memory machines. This was the Cage
system, based on AGE [Nii 79] described in Section 4.1. The second course was to
rethink the blackboard metaphor from scratch in the hope of achieving really high
performance on distributed-memory multiprocessors, such as the CARE machine. This
resulted in the Poligon system described in Section 4.2.

Three generations of papers have been produced describing the strategy of the project, the
Cage and Poligon systems as they evolved, and the experimental results produced by these
systems. The early motivation for the designs of these systems is outlined in [Nii 86, 3-
196], while [Nii 88a, 3-205] and [Nii 88b, 3-233] show the evolution of these concepts
and detail the experiments performed on the two systems, dwelling in particular on the
factors that motivate and constrain the design and performance of parallel systems in
general and of parallel problem-solving systems in particular. Numerous lessons were
learned in the process of this research, which are listed in the above reports and in [Rice
88a, 4-139] and [Rice 89b, 4-219].

4.1. Cage

Cage (Concurrent AGE) [Aiello 86, 2-1], [Aiello 89, 2-26] is a reimplementation of the
AGE [Nii 79] blackboard system framework also developed at the Heuristic Programming
Project at Stanford. The central idea behind Cage is that the blackboard model provides a
certain amount of parallelism by its very nature. It should therefore be possible to exploit
this parallelism without any major redesign or rethink for the problem--olving model.
Cage is, therefore, an implementation, which is designed to allow the concurrent execution
of a blackboard system through the concurrent execution of the knowledge sources and
rules in the application (see Figure 5). A key factor in the design of Cage was that control
of which rules and knowledge sources were to be run in parallel was left entirely to theuser. This allowed the user to develop an application serially, debug it and then gradually

increase the amount of parallelism exhibited by the application. This allowed the easy
identification of bugs that were a function of the concurrent execution of small components
of the application. It also allows the developer to experiment with different configurations
of parallel execution so as to maximize the performance of the application, which might not
be maximized by enabling all possible concurrency options because of contention
problems.
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Figure 5. The Cage Architecture. Update events are perceived by the scheduling
component and collected in a global event queue. The scheduler selects the knowledge
sources that are interested in any given event and can execute them in parallel. These

knowledge sources in turn inspect the blackboard and perform updates that are seen by the
scheduler.

At the outset it was not known how difficult it would be to program such a system and how
rl much performance could be expected, but it was thought that such an architecture might

well be suitable for the current generation of multiprocessors, which mostly have a shared-
memory design. Blackboard systems are typically implemented using a central, shared
database to represent the blackboard. The match between the shared blackboard and the
shared memory resource seemed to be worth investigating.

The Cage system was implemented first on a simple emulator, which emulated the func-
tionality of a QLisp implementation without paying the costs of detailed simulation. It was
later ported to run on the CARE simulator, using QL an implementation of QLisp and
Multilisp language primitives built on top of the Lamina shared-variable programming
interface [Saraiya 88,4-324].

The Elint application, described in Section 5.1 was mounted on the Cage system and exper-
iments to measure its speed-up and throughput were performed on it. These are detailed in
[Aiello 88, 2-15] and [Rice 89a, 4-198]. The Cage system has shown that blackboard pro-
grams can, indeed, be run in parallel in a relatively simplistic manner. The performance ofCage, however, is restricted by a number of factors [Nii 88b, 3-233]:

* its implementation, which was not highly tuned;
* its architecture, which exhibits significant contention for global shared resources

such as the event queue;
* the QLisp substrate, on which it is built, and
* the shared-memory hardware upon which it runs.
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Thus, although the Cage architecture is a viable architecture for existing shared-memory
hardware systems, because of the close link between the Cage programming model and its
underlying hardware, we do not anticipate that future concurrent expert system tools will be
built much like Cage. We believe that the trend of multiprocessor design is broadly away
from shared-memory machines and towards distributed-memory designs because of their
greater ability to scale.

4.2.. Poligon

The expectation that the next generation of multiprocessors, for reasons of simplicity, per-
formance and cost, are likely to be distributed memory machines required a reexamination
of the blackboard model before it could be mounted on such a machine in a manner likely to
deliver good performance. Poligon [Rice 86a, 4-1] and [Rice 86b, 4-19], a domain
independent blackboard-like programming language and concurrent programming
environment was developed in an attempt to address these needs. Poligon adopted the
view that processors are going to be cheap and plentiful. Thus, is would be quite
acceptable if necessary to allocate one processor or more to each node on the blackboard.

First the serializing, centralized control mechanism of conventional blackboard systems
was discarded. Distributing the nodes of the blackboard over the processor network al-
lowed the knowledge base to be spread over the blackboard as well, so as to eliminate any
performance bottleneck due to the communication costs between the knowledge base and
the blackboard. The simplest available nile invocation mechanism was selected, so as to
maximize performance; rules were directly attached to slots of the nodes on the blackboard.
A modification to a slot, to which a rule was attached, resulted in that rule being invoked.
Rule invocations were spun off into different processes on different processors for execu-
tion, thus minimizing the length of the critical sections on the processors holding black-
board nodes and allowing multiple, simultaneous rule invocations for the same modified
blackboard object (see Figure 6).

In practice, these mechanisms did indeed result in good performance, but they also resulted
in significant problems. Many uncontrolled asynchronous processes, all reading and
writing things in a shared database, are unlikely to reach a coherent or correct answer.
Extra mechanisms had to be implemented, which allowed the blackboard nodes to have
"goals" and the ability to evaluate their own performance with respect to the overall goal of
the system. This allowed the blackboard nodes to make local decisions about whether to
perform any modification operation attempted by a rule. The result was a sort of dis-
tributed hill-climbing behavior. Nodes iterated towards a good solution.

1-14



~Rules

pdt

Rules :"'---" '.:""'  Rules

Figure 6. The Poligon Architecture. Updates o,. the blackboard are observed by
rules which watch specific slots of blackboard nodes. These rules can fire in parallel caus-

ingfurther updates to the same or other nodes. This flow of updates from one node. to
another implicitly forms pipes, which increase the parallelism realizable by the system.

These mechanisms did not come without associated costs in terms of granularity. Although
the Poligon system delivers very high performance when compared to other blackboard
systems such as AGE, it nevertheless significantly lacks the performance provided by an
application written directly in Lamina. However, an appropriate conceptualization and
decomposition of a problem is the most difficult task for a programmer, aid the most
critical for obtaining speed-up. Poligon is a relatively high-level language compared to
Lamina, and as such gives the programme- an edge in conceptualization. Poligon,
therefore, provides a fairly general concurrei .n-iplementation of the blackboard problem-
solving model with all of the advantages of abstraction and modularity that this confers. It
does so, however at a price. A detailed rationale and description of Poligon's design and
implementation can be found in [Rice 89b, 4-219]. This paper, through a detailed
discussion of the factors that limit the performance of blackboard systems in general and
concurrent blackboard systems in particular, shows the motivation for the design of
different aspects of Poligon, detailing the evolution of numerous different aspects of the
Poligon system, and highlighting the deficiencies of each design that was attempted and
then superseded. h also describes a number of means by which the performance of
Poligon could be improved by superior compilation if it were to be turned into a production
quality system.

The Elint application, described in Section 5.1, was implemented in t'- Cage, Poligon and
Lamina systems. The results of these experiments are reported in [Rice 88b, 4-165], [Rice
89a, 4-198] and [Nii 88b, 3-233]. These reports also describe both the motivation for and
architecture of Poligon as well as highlighting numerous experimental results, which are
analyzed with a view to the lessons that can be learned from Poligon's performance. In
[Nii 89, 3-298] a discussion is given on the way in which the serial Elint application was
recoded to as to run on the concurrent Poligon framework. This has numerous
implications for the development of concurrent real-time signal understanding problems.
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Another application called ParAble, implemented using the Poligon framework, is de-

scribed in Section 5.3.

5. Applications

Our research strategy called for the project work to be application driven. The search for an
application was guided primarily by two considerations (a) practical versions of the
application would demand significant speed-up in execution, and (b) methods for
approaching the application held a certain obvious potential for concurrent execution.
Based on these considerations, the application area chosen was real-time signal
understanding. Existing blackboard systems, such as HASP/SlAP [Nii 82] and Tricero
[Williams 84] had shown both that the blackboard problem-solving model was appropriate
for this domain and that the performance deliverable using existing blackboard tools was
inadequate to field such systems.

What we needed, therefore, was a problem which was complex enough to give us a rea-
sonable model of a real system, and yet ;nple enough that we would not spend too much
effort on the mechanics of its implementation. We decided initially to focus on a problem
called Elint, a system for the understanding of passive radar signals. This application,
derived from Tricero, is described in Section 5.1

After much experimentation it was determined that our ability to exploit parallelism was
being constrained by the problem we were using - it was not sufficiently complex in terms
of the amount of knowledge and the amount of data available. In the search for a more
knowledge-rich and computationally intensive application we developed the AirTrac
application, a system for interpreting active radar signals, which is described in Section
5.2.

Experiments were also performed in application domains other than that of real-time signal
understanding; ParAble, a system for fault-finding in particle accelerator beam lines has
been developed using the Poligon framework. This work is described in Section 5.3. A
number of numerical or semi-numerical programs have also been developed during our
more hardware-related experiments. These investigations are mentir -Z in Section 5.4.
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5.1. Elint
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Figure 7. The Elint Application. Sensor data is abstracted ito hypothetical radar
emitters, which are tracked as clusters of emitters.

Elint is a soft real-time system for the interpretation of passive radar signals. Data are col-
lected from a number of receiving stations and are integrated so as to allow the system to
track radar emitting aircraft as they pass through the monitored airspace. The data are ab-
stracted into hypothetical radar emitting platforms. These emitters are in turn collected into
clusters of emitters, which might represent a number of planes or a single plane using
multiple radar systems, as is often the case with modem military aircraft (see Figure 7).

Elint was first implemented using the CAOS system. It was originally thought that this
work would take only a couple of months to do. In fact, the complete task - implementa-
tion, experimentation and analysis of results - took 18 months. We learned early on that
it is by no means a trivial matter to reimplement an existing, serial application in a parallel
environment. These initial experiments, which are detailed in [Brown 86, 2-78], delivered
both qualitative and quantitative results concerning the performance of a concurrent system
such as we were envisaging, over a variety of different numbers of processors, and
investigated such critical areas as overall speed-up and "solution quality." The concept of
solution quality arises in many knowledge-based systems, where there is no such thing as
the correct problem solution, but only satisficing (i.e., acceptable) problem solutions. A
primary objective of the experiments was to investigate the trade-offs between the
imposition of various synchronizations (and the resulting loss of concurrency) and the
quality of the problem solution.

Since the CAOS implementation, Elint has been implemented three times; using Lamina
[Delagi 88b, 2-446] [Saraiya 89, 4-337] and the Cage [Aiello 88, 2-15] and Poligon [Rice
88b, 4-165] [Nii 88b, 3-233] frameworks and a number of experiments have been
performed on them. In order to perform any of these experiments we found it necessary to
develop a technique for performance measurement that actually measured the sustainable
data-rate that the system under experimentation could maintain for a given number of
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processors without being swamped by the incoming data, i.e. while still giving non-
increasing latency in its outputs. This technique is discussed in detail in [Nii 88b, 3-233].

Each of tbese reports details not only the underlying architecture of the solution, for
example an object-based, pipelined decomposition in the case of the Lamina experiments,
but also covers extra areas for experimentation appropriate to the framework being studied
and the intended level of abstraction of the framework. These areas included: multiple
grain sizes [Nii 88b, 3-233], [Aiello 88, 2-15], speed-up as a function of only pipeline
parallelism [Nii 88b], [Rice 88b, 4-165], [Rice 89a, 4-198], scaling with respect to
knowledge base size (number of rules) [Nii 88b], [Rice 88b], [Rice 89a] and load
balancing [Saraiya 89, 4-337].

5.2. AirTrac

The development of the Elint application showed that the amount of parallelism that could
be demonstrated was much more dependent on the application than we had anticipated.
Following the analysis of Reddy and Newell [Reddy 77], we hypothesized that by
extracting parallelism at the different levels of the system's implementation hierarchy we
could gain multiplicative speed-up. The analysis of our experiments showed that the
speed-up was disappointing, largely because the application itself did not have enough
potential for the exploitation of parallelism.

Our response to this was to develop an application which would really stretch the hardware
and software we were developing in a realistic manner, the AirTrac application [Delaney
86, 2-459].

The AirTrac problem domain sounds superficially like that of Elint. It was a system for the
interpretation of radar data, though in this case the radar systems modeled were active, not
passive. Unlike Elint, AirTrac was designed to go beyond simply tracking aircraft and
identifying likely threats. The scenario for AirTrac was the detection of "smugglers" flying
across a border. The problem faced by existing radar users is that a large number of
legitimate aircraft travel in the same airspace as smugglers. Smugglers may take advantage
of variations in terrain in order to find areas of poor or no radar reception. They also resort
to other evasive tactics. Thus to identify and track smugglers, the AirTrac application had
to interpret the behavior of the aircraft it was tracking over time.

The system was designed in a number of layers so that different implementation efforts
could be decoupled. The first subsystem implemented was called the Data Association
component [Nakano 87, 3-149], and is the subsystem, which most closely matches the
Elint application. It was initially intended that this component would be implemented using
the Poligon framework. It was found, however, that the simulation of the Poligon system
for a problem as complex as AirTrac would take prohibitively long. Consequently AirTrac
was implemented directly in Lamina. Substantial speed-up was shown (of the order of one
hundredfold with the use of one hundred processors), which seemed to increase linearly
with the number of processors. This encouraging result was achieved by the use of
replicated pipelined sequences of objects processing ,he input data. It was further found
that the degree of correctness of the solution was not compromised by the decomposition of
the problem so as to make it execute concurrently, nor was it affected by highly overloaded
input data conditions [Nakano 87].

The second component of AirTrac, Path Association, was significantly more knowledge
intensive than the first. The task of the Path Association module was to group together
tracks produced by the Data Association component into plausible aircraft flight paths.
This subsystem was also implemented directly in Lamina initially. However, programming
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in the raw Lamina framework was too complex and time-consuming, so a layer was built
on top of Lamina, called ELMA [Noble 88b, 3-409], which provided the abstraction model
needed for the implementation. The experiments described in [Noble 88a, 3-309] provided
confirmation of the earlier results obtained with the Elint application.

The project leaders decided to continue to focus resources on the Path Association
component, where there was still much to learn and where we believed further speed-up
and insight could be obtained. In [Muliawan 89, 3-48], further experiments in the AirTrac
application's Path Association component are described. The effect of high-level control
strategies on system performance is discussed, as is the effect of varying the frequency and
width of the input data, for various numbers of processors. System performance was
measured both in terms of sustainable data rate and in terms of latency, "excess ratio" and
capacity. The relationship between the quantitative and qualitative performance of the
system is also discussed.

The final, most abstract, component of AirTrac - Platform Interpretation - was intended
to classify the aircraft being tracked by the Data Association and Path Association modules
and to predict their behavior, based on these classifications and their past actions. A
platform classification module was implemented, using a general, forward-chaining,
concurrent classification system [Clancey 84]. These experiments demonstrated speedup
and are described in [Maegawa 90, 3-20]. The key idea was to view the c'-ssification
system as a network of nodes representing classifications and subclassifications. Speedup
was achieved through the concurrent execution of multiple instances of the classification
network. Because the input track information was continuously acquired over time, the
system necessarily supports periodic reevaluation of all classifications. That is, all
conclusions drawn by the system may be continuously modified as new supporting
evidence enters the network.

5.3. ParAble

The ParAble project [Bandini 891 was an attempt, by choosing a completely different appli-
cation domain, to test the generality of the problem-solving model offered by Poligon. To
do this we made a parallel implementation of the ABLE system [Selig 87], developed also
at Stanford.

The objective of the ABLE project was to find a rational and fast way to diagnose particle
accelerator beamlines. These large and complex machines are very prone to beam
alignment problems due either to misalignment of the magnets, which steer and focus the
beam, or to problems with the power supplies to those magnets, which result in the
magnets not having the desired strength. These beamlines are so complex that it can take
many months of knob-twiddling in order to commission them.

By the use of an analytic model of the transfer functions of the beam-line components, and
a number of heuristics that use successive runs of the model, comparing the results with the
real data to locate the faults, the ABLE system was able to find faults in such systems in
about ten minutes. As particle accelerators become more complex there may well be a need
to control them in real time, so although there is no immediate need for higher performance
in the ABLE system, it is not unreasonable to suppose that there might be in the future.

It number of Experiments have been performed on ParAble, detailed in [Bandini 89, 2-58].
The realizable parallelism in this project was, again, found to be limited mostly by the
availability of data parallelism.
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5.4. Numerical and Semi-numerical programs

The expert systems mentioned above are not ideal applications for multiprocessor execu-
tion. They are irregular and very data dependent. A large body of applications already ex-
ists in the area of numerical and semi-numerical processing, which will require the speed-
up associated with parallel execution. Indeed, such programs are already being run on a
number of multiprocessors. It is therefore essential that any machine designed with a view
to being general-purpose must also be able to execute these regular, algorithmic problems
efficiently. A number of small numerical programs were developed, to be used for
experiments in system architectures and topologies [Byrd 88a, 2-181] and [Byrd 88b, 2-
196]. These experiments allowed us to test our hardware and software ideas in a much
more controllable way than we can with any expert system application.

6. Conclusions, Observations Results

The previous sections summarized the experiments performed, the types of computations
explored, the simulation engines built to conduct the experiments, and some experimental
results. We tied each of these to specific technical reports of the project. In this section,
we add conclusions, results, and observations of a general nature. These have been drawn
from across the range of experiments performed, and we believe will be of interest to a
large body of computer scientists interested in the problems of parallel computation.

We begin with words of caution. Our experiments were performed mainly in the area of
symbolic problem solving by computer-that is, the traditional mainstream area of artificial
intelligence research. The kinds of entity typically manipulated were symbolic objects and
rules, not algebraic formulas or matrices of numbers. The computations were largely
symbolic computations (as, for, example typically performed in the LISP language).

Low-level representational choices, constituting the focus of our experiments, and therefore
influencing our conclusions, include object-orientation with message passing, on a MIMD-
type machine. Most experiments were performed using distributed-memory system
architecture. One final caveat: all experiments were performed on our instrumented
simulator. Though we are confident of the quality and veracity of the simulated
computations, a simulator is only a model of reality.

Finally, one must always keep in mind the simple algebraic relationship (often called
"Amdahl's law"). The ultimate limit to speedup of computation on a parallel machine, the
"Amdahl limit" is determined by the residual amount of "serial processing" remaining in the
computation after the programmer has extracted and used all the parallel computation
schemes possible. Thus, for example, if the intrinsic serial component of the computation
is no less than 1%, then the overall speedup can not exceed two orders of magnitude
(xl00).

To repeat, in reading what follows, the reader should have in mind the general picture of a
two-dimensional network of LISP computers (each with a communications subprocessor)
of size NxN (typically lO10 or 16xl 6). These processors are receiving, as input, streams
of encoded sensor data, and, with some latency (e.g., milliseconds or seconds of sensor
time), computing hypotheses of platform track segments, platform identity, etc.
Computational work is distributed over the multiprocessor but many of the nodes of the
NxN network are not necessarily busy all the time.
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6. 1. Speedup over serial computation

An early result by Gupta [Gupta 861 for parallel ruie-based computation indicated that a
speedup of approximately one order of magnitude (OM= x10) was achievable. Our
experiments confirmed that speedups of approximately one OM were readily achieved, but
not without significant programming work and ingenuity.

Speedups of 2 OM were very difficult to achieve for individual problem solving efforts but
were achievable for groups of these efforts (e.g., one aircraft versus many aircraft). We
refer to such application circumstances as being characterized by "data parallelism." In
data-parallel situations (which may be quite normal in the world of computing
applications), the overall intrinsic parallelism can be made sufficiently high relative to the
intrinsic serialization that 2 OM (xlOO) is achievable.

Speedups of 3 OM (x1OOO) were well beyond the reach of any techniques, or any problem
size, explored in this study.

Because of the limits imposed by the inherent serialization, even when the application is
augmented by favorable data parallelism, speedup will reach a ceiling, beyond which one
cannot push the speedup by simply increasing the number of computing nodes.

When working in a problem environmept in which data enter in continuous streams,
determining how to measure effective speedup is an important issue. Our observation is
that stable latency in delivering a computational hypothesis (i.e., answer), after the
corresponding data are presented in the input stream, is the appropriate measure. Thus, for
each multiprocessor configuration many input data rates must be tried before a stable
latency can be found. The determination of speedup is thus a lengthy process. This
technique is in contrast to the more common method of simply dividing the application's
run-time into the run-time on a single processor. We found this latter method to be highly
deceptive for real-time and data-reactive applications.

Our observation is that the most significant sources of "parallelization" of a problem are to
be found in the application itself, and therefore by the application programmer. Of course,
system-level language and architectural features must be there to support this human
programmer creativity. Because the programmer plays such a vital role in realizing the
speedup from parallelization, programmer language tools for conceptualizing and writing
concurrent programs are of great importance. Equally important are well-instrumented
debugging tools to aid the programmer since the complexity of parallel run-time
environments is well beyond anything that even the best programmers have been trained to
cope with.

We can not emphasize too much the importance of a variety of software instruments in
tuning parallel computations. This must be provided, either by the manufacturer (in the
form of software instruments responding to hardware measurements) or by a fully
instrumented, carefully designed simulator of the parallel hardware. Today, neither of
these is routinely done. We found the feedback provided by the instrumentation in our
simulator essential in refining designs: to break bottlenecks, balance pipelines, evaluate
load balancing schemes, and so forth.

Careful thought must be given to instrumentation at the application level (not just the
machine level) because execution behavior is just too complex for programmers to think
through. Experimentation is needed to decide how to instrument at the application level.
These decisions are not clear and straightforward.
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6.2. Pipelines

The architectural approach to concurrency that most consistently proved effective in our
experiments was building pipelines for computations, and replicating them when
necessary.

" For our data-streaming application environment, pipelines were a natural fit for
exploiting the intrinsic parallelism and the data parallelism in the problem. (By
intrinsic parallelism we mean that the stages'in the pipeline correspond in a natural
way to steps in the problem solving process: inference steps; subproblem pipes;
multiple hypotheses and goals, etc.)

• Pipelines must be carefully balanced during execution. For example, if a pipeline
consists of a series of invoked knowledge sources, these must have similar "grain
size" and data density.

* Some computations branch in a fan-out manner. The pipeline approach to fan-out
computations can be made to yield good speedup.

• Conversely, fan-in of computations is disruptive of pipelining, and seriously
impacts the speedup that can be realized. A particular type of fan-in occurs when
symbols are passed "up" an abstraction hierarchy, e.g., when special cases are
recognized as instances of a more general case. In an abstraction hierarchy
pipeline, it is important that the communication up the hierarchy should be designed
to decrease, proportionately to the amount of "branchiness" at the lower levels, as
the symbolic data flows "up" the hierarchy.

Our experiments with pipelines showed that resumable processes are rarely needed (hence,
the architecture i.eed not treat this issue as one of high priority). Most computational grains
can be realized in such a way that they, and therefore the processes in which they run, can
run to completion. As a corollary, our experiments showed that the significant costs
associated with process instantiation and process switching can often be avoided by the use
of this run-to-completion programming model.

6.3. Basic computational metaphor

The object-oriented message-passing paradigm, was found to be a natural and comfortable
metaphor in conceptualizing concurrent programming and in thinking through the issues of
distributed memory and communications. This model was found to be highly compatible
with the underlying message-passing, distributed-memory system architecture used in our
experiments. It is not clear that all object-oriented models will have this property. For
example, multimethods in CLOS may be incompatible with distributed memory
architectures.

6.4. Communication

Our experiments showed that communication patterns among processes were surprisingly
static. The implication for interprocess communication is to prefer "streams" to "futures,"
i.e. to amortize the cost of initiating communication between processes by maintaining
connections and passing more than one value between connected processes.

An architecture for hardware-supported multicast was designed that provided for adaptive
cut-through routing. Qur experiments proved its effectiveness for deadlock avoidance.
The scheme provides cut-through rmuiticast without requiring dedicated storage in the
communication facilities for a full packet.
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6.5. Problem Solving Methods

A relatively straightforward "parallelization" of the blackboard problem solving framework
effective in serial environments, i.e., Cage (Concurrent AGE) versus AGE, proved to be
ineffective, i.e., did not deliver much speedup. The key issue was centralized control, and
the consequent low "Amdahl limit", mentioned earlier, that resulted from the
synchronization at this central control point.

A radically reorganized blackboard framewor. \Poligon) using decentralized control,
enabled significant speedup.

0 The Poligon experiments showed that although problems can be solved without
global control, some limited, non-local control was needed (for example, to manage
node creation).

* For the minimal control regime, each solution node should have its own goals and
evaluation functions (to enable local "hill climbing"). The use of local "hill-
climbing" resulted, in our experiments, in globally valid, mutually consistent
results, in spite of the lack of global coordination. It was observed that this local
hill-climbing reduces the latency in getting the plausible answer (i.e., performance
improves).

We must caution, however, that not all problems can be solv.J (effectively or at all) with a
control regime that enforces this "local" view. Here, as before, the choice of approach is
application-dependent, or at least dependent on the way a problem is formulated. One must
consider the tradeoff between global control versus local knowledge (in the form of
evaluation functions and local control).

Concerning rule processing in problem solving, our experiments showed that the rules
within sets of rules (i.e., knowledge sources) can be run in parallel, and that this
contributes to speedup. However, running rules in parallel requires encapsulation of the
data used by the rules (i.e., the rule context). Because the context can become obsolete by
the time the rule is processed, this technique needs to be t'sed in conjunction with local hill
climbing to prevent outdated and invalid conclusions froir being recorded.

We observe that the quality of a solution is an issue in parallel problem solving. AI
problem solving methods usually "satisfice," i.e., there is no one ".ht answer." But in
real applications some answers are better than others. With decentralizeJ c-'trol, it can be
difficult for the programmer to orient the program's behavior always in the 11- -:tion of the
"better" answers. Here is an obvious tradeoff-the more centralized the control, :e more
programmer guidance toward the "better" answers, the less the speedup (too much
centralized control, synchronization, i.e. a low Amdahl limit). In our experiments we were
able to preserve solution quality by keeping data consistent and controlling order-critical
tasks. However, we did not extract a general technique or even a general engineering
understanding of this fascinating issue.

A related issue is the tradeoff between problem decomposition and degree of coupling
among the decomposed subproblems. We observed that as problems are decomposed into
smaller grains, the subproblems became more interdependent (more data sharing, more
communication), nullifying the potential parallelism. Thus, optimal grain size is highly
dependent on the application as well as on the processing overhead.
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6.6. Development strategy

We observed a three-part strategy to be important.

a. Do a serial execution of the parallel program. This removes the obvious elementary
bugs.

b. Proceed to a relatively crude parallel simulation, using a purely functional simulator
with ran.;domized scheduling of resources. This will catch the first level of "parallel
processing" bugs.

c. Proceed to the fine-grained instrumented simulator for the experiments and the
performance tuning.

6.7. Analysis of the application

Not enough can be said in motivating a careful study of the application to understand its
intrinsic parallelism. Previously employed serial processing schemes used to handle the
application can be seriously misleading and ineffective.

In one of our experiments (ParAble), the domain expert, a accelerator physicist, was able to
reconceptualize the computation in a way that was not only "highly parallel" (enabling a
good experimental result for us) but also "highly natural," enabling him to understand his
problem with great clarity.

Applications analysts should not try to "force fit" their application to the parallel computing
metaphor, but rather should seek a natural, intrinsic parallel structure of the computation.

6.8. Load balancing

Balancing the computational load among the nodes of a multicomputer is a serious issue of
performance and economics. It takes both computing and communication to perform
effective load balancing, so an obvious performance tradeoff is involved.

Our experiments on adaptive global load balancing used an explicit stochastic-process
model to estimate the time evolution of processor loading and to model the dissemination of
load-information. This model allows improved estimates to be made of system-wide
loading, which allows a given level of load balance to be achieved with far fewer object
migrations. This in turn improves the system's performance (in ,rms of consistently
meeting latency deadlines), provided that migration costs are sufficiently high (remember
the tradeoff mentioned above). The performance improvement achieved and the
circumstances under which it can be achieved, however, were found to be seriously limited
by the unexpectedly poor correlation between load-estimate quality and load balance.
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Ourham NC 27736

DL-IC



University of Chicago
Comouter Science Dot. RY 155
Attn: -'r Charles lartin
1100 E 5?th Street
Chicaio IL A'637

Yale University
Dept of Computer Scien.cp
Attn: Mr Drew McDermatt
51 Prospect Street
New 4aven CT 0652'Y

O3kridle s.aitionaL Lab
Attn: mr 9ob MIcLaren
P.O. 3ox 20'?
BuiLding 6011, Mailstop 5370
Oakride TN 37.31-A37.)

ONR/Code 1133 IS
Attn: Mr AL3n Meyrowitz
8.30 orth luincy St
4rLington VA 22217

Intetticorp
Attn: Ir Paul Morris
1975 El Camino Real West
Mountain View CA 94G41

Stanford University
Attn: Dr H. Penny Nii
Heuristic Programming Project
701 Welch Road, Buildino C
Palo Alto CA 94304

Stanford University
Computer Science Oeprtment
Attn: Dr Nils J. Niilsson
Mariar-t Jacks qall
Stanford CA 943,5

University of Chicago
Comp-iter Science Deot ;Y 15 "
Attn: Chris wens
11),- : 5.th 3trqet
C h i c 3 :L t.) 37

4abson CoLteIe
lath Oppir tment
Attn: Or !,,r ion *). Prichett
labs)n Park r, A - 15,'
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IT Al Lab
Attn: Dr Charles icn
Pooni N--43-37.)
545 Technology 3quare

C3nrin J) I A 0213 -19 i

4lt, ,eranek and \ewman, Inc.
Depirtment of A:
A ttn: r R. 2ruce ouerts
1 ) "outton 3treet
C nmbriige "A J 2231

TeLens Research
Attn: -.Ir StinLey J. 7osench.,in

576 "Middlefield Rd
Palo Alto CA Q43)1

'oneywelL Systems & Research Center
Attn: Mr Qobert Schraj
MN 65-2100

3660 Technology Drive
Minne3oolis MN 55418

SUNY at luffdto
Computer 3cience Dep3rtment
Attn: Dr Stuart C. Shaoiro
226 Bell Halt
9uffat'i NY 14260

NRL
Attn: Dr Randall Shumaker
Code 5510
4555 Overtook Ave, SW
Washinqton DC 20375-503n

Robotics Institute
^MU

Attn: 4r Stephen F. Snith
Schenlpy Dark
Pittsburgh PA 15213

FM'C Corporation
ATTN: N. S. Sridharan
CTC 12)5 Coleman Ave.
Santa Clara CA 9552

Carneoie Miellon University
Robotics Institute
School of Comouter Science
Attn: I1s Katia Sycara
PittsburJh 01 15213
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Al AppLic-3tions Institute1

United 0i-1o

03rc. -N.3tiona~L Lab1
a t t n lr 3ric9? Tonn
P. I). Thnx 2133
E3uiLdinq 45", N.orth.. !aitstoo 6?O?
)a3k r i -4.e T' Iq 7331-62fS?7

Liockh- pi AT, Clnter, -2II

4 t t n 'Ir ')t e ven V? r e
3251 '1anovpr -It.
P3 Ia A.to. C4 ; 434-117

,-- Sy't?-s 7, Technotogies Corr,
A-tt'l: M~r F. WAlker
IJ *4-.iuLt.-n Street
Caitbrilqe '4A J223

-exas Instrunientsp &nc.
Al Lab
Attn: RjWal
P.O. :1,)x 555474P IIS ?3.8
DatltaS TX 75265

Attn: Mr mich3el P. WetL3n

WPAF-1 3( 45433

SPI InternationaL
A t tn: '4r )ivil Wilkins

333- avv.nqwaoip j 227
*1er'Lc 03rk CA 94L25

: I Li -j

54 T.cnnrvt.,iy 3u er~

Attn: Lr -rdt ct-?-h,?n : ros
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The ':T; ror,,orarion

Attn: t'r -)"ice Deoref
1 rintan lzt

1 5C. Fon, Vircto1 2ri 30 5

Aust rat ia A!nttt

The MITOE Corooration
Attn: M-s Phyttis Koton
Surtinliton Rd, '4S A0245
3edf ord MA -.173%'

The MITRE Corporation
Attn: Mr Mark NadeL
fiurLiniton 2-i, MS A 94 7
i3edford1 "A 0~173D

Rutg~ers University
Deat of Comouter Science
Ii L Cent er, ilusc h Campus
Attn: M-r CharLes Schmnidt
N~ew ?runswick %~J 'cEO')3

Attn: Prof 4braham Wdsmnn
?oting AF7E- DC 2r--32-6544;

Univers3ity of Rochester
Chai rman, D.ot of Comp Scienc-?
fttn: Prof James F. ALlen
C)nuter Studies -3uitdinq
4oches t er N 14 5

r.Larksnn University
4~ttn: -)r 3usan E. Conry

E~~~~act~'.L 1 413 p t r 1--1) D



University of Massachusetts
COINS Deoajrt-nent
Attn: Dr Victor R. Lesser
LederLe Graduate Research Center
Amherst M1A Q13C3-X01

1.4)A Ames qesearch Center
Attn: Dr peter E. FriedLand
MS 24 4-1

Code RI -

Moffett PietJ CA 04C'35-1Q09

Soi International
Attn: X *0 3rie A. ;iienkowski
333 Ravenswood Ave, EK3T7
Menlo Park CA 94025

Honeywell Systems , =esearcin certr
Attn: Mr Mark ;. :3od. y
3660 Technology Drive
Minneapolis !,, 55413

ES, IAV

3romn Suitding
Hanscoa !FqV MA 01731-5COG

Laboratory for Computer Science
Attn: Jon DoyLe
MassachusttS Institute of Tech
545 Technology Square
Cambridge MA 02139

UNISYS

Attn: P'r Timothy 4. Finin
Ctr for Ajv Info Technoloay

-- E'ist .wedesford ;a
14alvern !A 19355

13)v Corooration
Attn: "r Scott Fouse
531 - rin Street
Suite 214
ThousinI ka's Ca 13$)

University -f "4SSnchusotts

1-3t of C-'rn " Inio &"ci-nc-
ttn: "Is :jwinna -issLin L
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The KiryI Corjor~tion
A Itn: *r J ef' 3 o th n r

Atn: r3 r id .i :tn

444 1 Iirn tr e.t,,3
T Da %j a Alto CA J1 7

A t tn 9r 5J-)uh Tanber,

31-5-1 qiYtv e v

Rochete InY 1452?n

3tnrUniversity 1mse

Compte Scinc Th'ua D cec

1-33 "Larp.ret J,3cks '4att
St3nforaJ CA -34305-214-1.

14)"' 'iLson :'Lvij

4.rLinqt.3n VA 2~ -3

A t tn: "r -iLtia.n -ikor

U,3. :.rn,' lase.rc' ffc
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U.S. Army Vitaistic -sch La'
-At tn SLC n -3:-C (*-*. A. q irsnhfer,-)

4oerjeen 'rovinj Grouni vl)
2 10 -'3 - 5 )6

TeLos 2esearcn
Attn: 'r "avid Ch3prian
5 7? 'ii4 -4L -f ie ld --aad

'Lto ALto C 4 '3O1

University of Michlan
Atti: Mr Edmund H. Durfee
Dept of Etect Eng . CS

11&1 3eaL Ave
An Arbor MI 4°,1I9

MITRE Corporation
Attn: Chris Elsaesser
7525 Colshire Deive
McLean VA 2219Z-3431

University of MaryLand
Attn: Mr James A. Mendter
Computer Science Dept
U IliC P
College Park M D 2"742

University of Washington
Attn: Mr Steven J. Hanks
Deot of Computer Science & Eng
Fq-35
Seattle WA 9S195

4noersorn ConsuLtinj
Attn: Yr -ruce Johnson
1; t South Wacker Drive
Chicaqo IL 6(46V5

Teleos ;oii.) rch
Attn: Leslie P. K. eLuinj

57s Mioilefiel.i Pad
3lo ALto CA 4]7I

Os 4.eF .'5 -'s'3rcn Center
St t :: it Ld-nLLey
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Lockhee 7D Info anj Cz
tt n: r -'. i L Li -m 3. -jrk

3251 H3sover Street
9 5- C 1 :*ui 1-i-1- 25,"

Pal toA C 9t -11 C

Carnegie "'elLon Universitv
Attn: 4.3j PeJdy
School of Zomouter Science
Pittsbur.h P4 15213

Copernican Group
Attn: "r Earl 0. Sacerdoti
737 Melville Ave
Palo Altto CA :43C1

M1ITRE Corporation
Attn: Mr Allen Sears
7525 Cotshire Drive
MIS Z289
McLean VA 22102

Cornell University
Attn: Mr Alberto %1. Segre
Dept of Computer Science
Ithaca NY 14-53-75C-1

N1CO Cornoration
Attn: Mr. Robert L. Simoson, Jr.
50C Tech Parkway
AtLanta !A 5L313



MISION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C I) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effe.. tive acquisition of C I systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but -ot limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


